Lesson 8-1

Geometric Mean

You will find the geometric mean between two numbers

You will solve problems involving relationships between parts of a right triangle and the altitude to its hypotenuse

Geometric Mean

$$\frac{a}{X} = \frac{X}{b}$$
The X is geometric

Mean of a b

Find the geometric mean of 2 and 8.

Find the geometric mean between 2 and 50.

$$\frac{2}{x} = \frac{x}{50}$$

$$x^{2} = 100$$

$$x = \sqrt{100} = 10$$

Find the geometric mean between 3 and 12.

$$\frac{3}{X} = \frac{X}{12}$$

$$X = \sqrt{3} = 6$$

$$X = \sqrt{3} = 6$$

If CD is the altitude to hypotenuse of a right △ then the two smaller ∆'s ? formed are similar to the each other

Write a similarity statement identifying the three similar triangles in the figure.

Geometric Means in a Right Triangle

1) The altitude is the geometric mean between the 2 parts of the hypotenuse

Geometric Mean in a Right Triangle

2) A leg of the big right triangle is the geometric mean of the hypotenuse (of the big triangle) to the part of the hypotenuse touching that leg

8 = m/leg m = 2 < part touching m = 16 m = y

Find c, d, and e.

$$\frac{30}{d} = \frac{d}{d}$$
 $\frac{1}{2}$
 $\frac{1}{180}$
 $\frac{1}{3}$
 $\frac{1}{2}$
 $\frac{1}{3}$
 $\frac{1}{3}$

$$\frac{6}{e} = \frac{e}{34}$$
 $e^{2} = 144$
 $e = 12$

Find e and f to the nearest tenth

f=455

$$\frac{20}{e} = \frac{e}{16}$$

$$\frac{20}{f} = \frac{e}{4}$$

$$e^{2} = 320$$

$$e = \sqrt{320}$$

$$e = \sqrt{320}$$

$$f = \sqrt{80}$$

$$f = \sqrt{16}\sqrt{5}$$

$$f = \sqrt{16}\sqrt{5}$$

