Lesson Parallel lines and Proportional **Parts**

You will use proportional parts within triangles and with parallel lines.

Triangle Proportionality

$$\frac{AE}{ED} = \frac{AB}{BC}$$

$$\frac{12}{3} = \frac{X}{2}$$

$$\frac{2}{3} = \frac{X}{3}$$

$$\frac{12}{3} = \frac{X}{3}$$

$$\frac{12}{3} = \frac{X}{3}$$

In $\triangle RST$, $\overline{RT} \parallel \overline{VU}$, SV = 3, VR = 8, and UT = 12. Find SU.

$$\frac{x}{x} = \frac{36}{8}$$

In $\triangle DEF$, DH = 18, $\underline{HE} = \underline{36}$, DG = 15 and DF = 45. Determine whether \underline{GH} // FE. Explain.

$$\frac{15?}{30} = \frac{18}{36} \quad 45 = \frac{15}{36} \quad 45 = \frac{15}{36$$

Midsegment

Connects the midpoints

Triangle Midsegment Theorem

A. In the figure, \overline{DE} and \overline{EF} are midsegments of $\triangle ABC$. Find AB. Find FE.

Proportional Parts of Parallel Lines

MAPS In the figure, Larch, Maple, and Nuthatch Streets are all parallel. The figure shows the distances in between city blocks. Find *x*.

Congruent Parts of Parallel Lines

Find x and y.

