5-2 Medians and Altitudes of Triangles

Use your book to define and draw all of the following.

Median	<u> </u>
*draw the medians	
Name the point of concurrency:	
Centroid Theorem If <i>P</i> is the centroid of $\triangle ABC$, then $AP = BP = and CP = \$	
Altitude	\wedge
*Draw the altitudes	

Name the point of concurrency: _____

ConceptSummary Special Segments and Points in Triangles					
Name	Example	Point of Concurrency	Special Property	Example	
perpendicular bisector		circumcenter	The circumcenter <i>P</i> of △ <i>ABC</i> is equidistant from each vertex.	A	
angle bisector	\bigwedge	incenter	The incenter Q of $\triangle ABC$ is equidistant from each side of the triangle.	A	
median		centroid	The centroid R of $\triangle ABC$ is two thirds of the distance from each vertex to the midpoint of the opposite side.		
altitude		orthocenter	The lines containing the altitudes of $\triangle ABC$ are concurrent at the orthocenter <i>S</i> .	A	