5-1 Bisectors of Triangles Use your book to find and fill in the definitions and formulas below. Perpendicular Bisector - _____ *draw the perpendicular bisectors Name the point of concurrency: ## **Perpendicular Bisector Theorem and Converse** If \overline{CD} is a \perp bisector of \overline{AB} Then ____ = ____ If AE = BE, then ____ lies on ____, the \perp bisector of \overline{AB} ### **Circumcenter Theorem** If P is the circumcenter of $\triangle ABC$, Then ____ = ___ = ___ | Angle Bisector | | |----------------|--| |----------------|--| *draw the angle bisectors Name the point of concurrency: #### **Angle Bisector Theorem and Converse** If $$\overrightarrow{BF}$$ bisects $<$ DBE , $\overrightarrow{FD} \perp \overrightarrow{BD}$, and $\overrightarrow{FE} \perp \overrightarrow{BE}$, then ____ = ____ If $$\overline{FD} \perp \overline{BD}$$, $\overline{FE} \perp \overline{BE}$, and $\overline{DF} = \overline{FE}$, Then _____ bisects ____ #### **Incenter Theorem** If *P* is the incenter of $\triangle ABC$, Then ____ = ___ = ____