5-1 Bisectors of Triangles

Use your book to find and fill in the definitions and formulas below.

Perpendicular Bisector - _____

*draw the perpendicular bisectors

Name the point of concurrency:

Perpendicular Bisector Theorem and Converse

If \overline{CD} is a \perp bisector of \overline{AB}

Then ____ = ____

If AE = BE, then ____ lies on ____,

the \perp bisector of \overline{AB}

Circumcenter Theorem

If P is the circumcenter of $\triangle ABC$,

Then ____ = ___ = ___

Angle Bisector	
----------------	--

*draw the angle bisectors

Name the point of concurrency:

Angle Bisector Theorem and Converse

If
$$\overrightarrow{BF}$$
 bisects $<$ DBE , $\overrightarrow{FD} \perp \overrightarrow{BD}$, and $\overrightarrow{FE} \perp \overrightarrow{BE}$, then ____ = ____

If
$$\overline{FD} \perp \overline{BD}$$
, $\overline{FE} \perp \overline{BE}$, and $\overline{DF} = \overline{FE}$, Then _____ bisects ____

Incenter Theorem

If *P* is the incenter of $\triangle ABC$,

Then ____ = ___ = ____

