P Q R

ŝ

2-7 **Study Guide and Intervention**

Proving Segment Relationships

Segment Addition Two basic postulates for working with segments and lengths are the Ruler Postulate, which establishes number lines, and the Segment Addition Postulate, which describes what it means for one point to be between two other points.

Ruler Postulate	The points on any line or line segment can be put into one-to-one correspondence with real numbers.
Segment Addition Postulate	If A, B, and C are collinear, then point B is between A and C if and only if $AB + BC = AC$.

Example	Write a two-column proof.
Given: Q is the	midpoint of <u>PR</u> .

R is the midpoint of \overline{QS} .

Prove: PR = QS

Proof:

Statements	Reasons
1. Q is the midpoint of \overline{PR} .	1.
2. <i>R</i> is the midpoint of \overline{QS} .	2.
3. $PQ = QR$	3.
4. QR = RS	4.
5. $PQ + QR = QR + RS$	5.
6. PQ + QR = PR, QR + RS = QS	6.
7. PR = QS	7.

Exercises

Complete each proof.

1. Given: BC = DE**Prove:** AB + DE = AC**Proof:**

Ă	В	C	Ē
		D	

Statements	Reasons
1. $BC = DE$	1
2	2. Seg. Add. Post.
3. AB + DE = AC	3

2. Given: <i>Q</i> is between
P and R , R is between
Q and S , $PR = QS$.
Prove: $PQ = RS$
Proof:

•	0	_	R	s
P	Q			

Prooi:	
Statements	Reasons
1. Q is between	1. Given
P and R .	
2. $PQ + QR = PR$	2
3. <i>R</i> is between	3
Q and S .	
4	4. Seg. Add. Post.
5. $PR = QS$	5
6. $PQ + QR =$	6
QR + RS	
7. PQ + QR - QR =	7.
QR + RS - QR	
8	8. Substitution

NAME

Study Guide and Intervention (continued) 2-7 **Proving Segment Relationships**

Segment Congruence Remember that segment measures are reflexive, symmetric, and transitive. Since segments with the same measure are congruent, congruent segments are also reflexive, symmetric, and transitive.

Reflexive Property	$\overline{AB} \cong \overline{AB}$
Symmetric Property	If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.
Transitive Property	If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$.

Example Write a two-column proof.	
A F F	
D	
Reasons	
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

Exercises

Justify each statement with a property of congruence.

1. If $\overline{DE} \cong \overline{GH}$, then $\overline{GH} \cong \overline{DE}$. **2.** If $\overline{AB} \cong \overline{RS}$ and $\overline{RS} \cong \overline{WY}$ then $\overline{AB} \cong \overline{WY}$. **3.** $\overline{RS} \cong \overline{RS}$ **4.** Complete the proof. **Given:** $\overline{PR} \cong \overline{QS}$ R PQ **Prove:** $\overline{PO} \cong \overline{RS}$ **Proof:** Statements a. $\overline{PR} \cong \overline{OS}$ **b.** PR = QS $\mathbf{c.} PQ + QR = PR$ d. e. PQ + QR = QR + Rf._____ g.____ š

	Reasons
	a.
	b.
	с.
	d. Segment Addition Postulate
S	e
	f. Subtraction Property
	\mathbf{g} . Definition of congruence of segments